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Abstract

The homogeneous system consists of the similar type of multiple processors, where-

as the heterogeneous system is equipped with a different type of multiple processes,

i.e. Central Processing Units (CPUs), accelerators, and Graphics Processing Units

(GPUs). Heterogeneous systems based on CPUs and GPUs are becoming main-

stream due to disparate processing and performance capabilities of these multi-core

architectures. Mostly CPU is better suited to perform latency-sensitive tasks and

incorporate architectural advances such as branch-prediction, out-of-order execu-

tion, and super-scalar capabilities. Whereas, many-core GPUs are more suited

to perform data-parallel and throughput-sensitive tasks due to the inherent mas-

sive multi-threading capabilities. Despite much interest in heterogeneous systems,

key scheduling challenges associated with them have not received much attention.

Particularly, with highly shared resources having heterogeneous CPU GPU de-

vices, new programs scheduling problems are arising. In such environments, high

utilization of resources and overall system execution time are important considera-

tions in addition to the need for scaling a single application. In the heterogeneous

computing environment, programmers map the applications only on CPU device

or GPU device. However, the default process for device mapping is not able to

produce best results. If one resource in the heterogeneous environment is powerful

in terms of more computing capability, the scheduling schemes favor the powerful

resource. In this scenario, the powerful resources are overloaded while all other

resources are under-utilized. This load imbalance problem results in more energy

consumption and increased execution time. In this research, a novel load-balanced

task scheduler for heterogeneous systems based on machine learning is proposed

that distributes workload based on the execution time of the application. The

proposed scheduling scheme determine which data parallel applications are like to

best utilize a core. We show that predicted execution time is a good scheduling

priority function so a parallel data execution time predictor application is devel-

oped. The scheduler uses this prediction to schedule tasks. The proposed scheme

consist of two phases: 1) A machine learning based execution time prediction. 2)

load-balanced scheduling of jobs to achieve the utilization of processing cores and



viii

reduction in the overall execution time of jobs. The experimental results on data-

set generated from two benchmarks Polybench and AMD shows that the proposed

model reduces execution time by 65.63%, increased resource utilization ratio by

93.3%, and throughput by 65.5% in comparison to baseline scheduling schemes.
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Chapter 1

Introduction

Modern computing systems have mainly two types of processing units, one is the

Central Processing Unit (CPU) and the other is Graphics Processing Unit (GPU).

Both Central Processing Unit and Graphics Processing Units have significantly dif-

ferent structures because of their application domain and perform different type of

task execution. Normally a CPU device executes sequential programs with laten-

cy optimization and GPU device executes parallel programs like image processing

with throughput optimization [1]. In multi-core architecture similar processing

cores or units (CPU’s) combine in an integrated circuit to execute a program or

multiple programs. The system that has the same type of processor is known

to be a homogeneous system. While a system that uses more than one kind of

cores or processors is referred to as a heterogeneous system. The heterogeneous

system consists of multi-core CPUs and many-core GPUs. The hybrid system of

CPU+GPU is mostly used in mobile platforms, desktop environments, supercom-

puters, and data centers. In heterogeneous systems, the multi-core CPU works as

a host program and controls the distribution of parallel workload, memory copy-

ing and execution of the programs in Multiple Instruction Multiple Data (MIMD)

style while GPU consists of many cores and performs the parallel execution of

programs in Single Instruction Multiple Data (SIMD) way. The multi-core archi-

tecture is developed as a solution to the issue of power usage, heat dissipation,

and transistor density.[2] Heterogeneous System Architecture (HSA) is capable of

1
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using multiple processor types like CPUs, GPUs, etc. [3]. HSA is a multi-core

system that not only gains efficiency by integrated cores but also by implementing

advanced computing capabilities to cope with complex tasks while maintaining

energy efficiency. The GPUs are of two type 1) Discrete type 2) Integrated type.

Integrated type GPU is built in by the vendors while the Discrete is defined by

user according to their need.

The latest applications create a workload of complex specifications due to enor-

mous data collection and massive computing capacity. The Central Processing

Unit (CPU) only is not capable of handling these diverse requirements. However,

heterogeneous computing is designed to support and enable different processors

such as CPU and GPU to be used effectively to address these fast-developing

workloads effectively. The utilization of these processors helps and enables new

experiences and also maximizes the throughput and reduces the turnaround time.

Using the multiple processors gives different possibilities to find at least the finest

of them that could succeed at completing a specific job. Some devices are rather

not sufficient for some programs while excelling in others. Once we understand

that each device has its power, we can effectively select the appropriate device for

a specific task. Heterogeneous computing helps in designing multiple processors

for working together and enabling unique user experiences.

1.1 OpenCL: Heterogeneous Programming

Framework

OpenCL, CUDA, OpenMP, are programming models widely used as a toolkit for

mapping jobs on heterogeneous systems. Among them, OpenCL is developed as

an industry standard for data-parallel applications for heterogeneous multi-core

and many-core architectures. OpenCL applications can be executed on multiple

processors like CPU’s GPU’s FPGA etc. and multiple hardware architectures like

AMD, Intel, and Nvidia, etc. because of its compact nature [4]. The OpenCL

program consists of two parts. 1) Host program: It is the outer control logic that
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performs the configuration for a GPU-based application. It executes the serial

part of the OpenCL program and is normally executed on the CPU. Only one

host program can run on the host. The host program is the only program that

does everything, such as memory control and synchronization, while the comput-

ing work is done by the kernels. 2) Kernel function: A kernel function is a Program

Written in the OpenCL language that allows it to be Compile on Any platform al-

lowing OpenCL for execution. Kernel function executes a parallel part of OpenCL

program on CPU, GPU, or any other supported device. The only way the host

can call a Program that will run on a computer is through the kernel function.

The kernels are executed on the processing devices. The kernels are mapped either

one to one, or one to many, it mean kernel program can run on one device and

can run on many devices.

The heterogeneous system performs very well if the programs are mapped in an

optimized way to their computing devices. Even though OpenCL provides con-

venient values, its performance would probably vary over distinctive portions of

the heterogeneous system. The cause would be that one program will have a low

execution period on the GPU rather than on the CPU, if allocated to the GPU

while achieving low execution time on CPU, the efficiency of another program

could decrease significantly. Programmers usually allocate jobs either to a CPU

device or GPU device, so other processing device stays idle. For instance, if all

tasks are allocated to a GPU, it causes the CPU to idle and waits for the GPU

to complete the assigned tasks. In this research, we are using OpenCL due to its

portability and having wide range of supported computing devices. OpenCL is an

open platform specifically for parallel programming that produces highly portable

code, this means that different platforms use the same code. Used by OpenCL, the

model consists of a host and many devices. The host maps to the main program

control core, For example, if the program is running on a processor, it maps to the

core that begins and merges the threads, and it maps to the system CPU if it is

running on a GPU. As a consequence, the modules will either map to the rest of

the cores on the CPU or to the cores of the GPU. The memory model of OpenCL

consists of two primary types of memory: host memory and device memory. The

host memory is the memory accessed by the host, and the device memory is the
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memory accessed by the processing devices. In contrast, four memory regions of

the device memory is based on what type of data it is, the kernels will distribute

data, and which kernels need access to it. In all work groups, two global memory

regions can be accessed by anyone. The first one is global memory. In this mem-

ory area provides access to all work-items in all work-groups to read/write and

the second one is constant memory in this type of memory data remains stable

throughout execution time. Device can read data from it but the host can allocate

data in constant memory. There is a memory area which is independent region of

each kernel that is a private memory. Finally, there is a local memory that acts as

a shared memory for devices in the same work-group, ensuring it can be accessed

by all devices in the same work-group.

1.2 Program Scheduling on Heterogeneous

Systems

There are multiple scheduling techniques used and applications designed for the

mapping of jobs to CPU and GPU in the heterogeneous system [5]. The scheduler

determines a specific data-parallel job should be allocated to which executing de-

vice i.e. CPU or GPU. The proposed applications are suitable if the level of tasks

carried out or the data to be processed is identified before [6]. Few researchers map

jobs on devices at run-time [7, 8]. The advantage of scheduling tasks on run-time is

that the decision of job mapping is more efficient and can be adjusted at run-time

but it increases the complexity and higher the scheduling overhead. Researchers

[9, 10] Splits the code and maps each part on a suitable computing device. Split-

ting the code requires high programming skills. Static and dynamic code features

are widely used to characterize a program application [2, 3, 5, 11, 12]. Static

code features like number of multiplication, number of float data types, number of

functions, etc. are extracted at compilation time. Dynamic features include input

workload. The code features consist of several instructions.

A data structure tree of the program is created at compilation time using clang

and LLVM compiler [13]. The tree provides information about the behavior of
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applications i.e. number of operations in the application, type of operations in

the application, number of code blocks in an application [3]. The feature vector is

formed which consists of all feature values.

The feature vector is provided as input to a machine learning-based predictive

model. The predictive model is trained on the provided feature vector. Important

features from the feature vector are selected based on their contribution to the

output. Using the reduced features set for predictive model training causes a re-

duction in the issue of over fitting, improves the accuracy, and also causes decrease

in the training time of the model.

1.3 Heterogeneous Scheduling Issues

Task scheduling of a processor is a tough assignment. It becomes more difficult

when heterogeneous systems are involved in task execution. Programmers must

write the code in such a manner that automatically maps the jobs to their exe-

cutable device. Programmers use the default scheduling strategy i.e. assigning the

serial portion of the program (host program) to CPU device and parallel portion

of the program i.e. kernel function to GPU device for execution [10]. This causes

the wastage of resources as most of the computation is done through GPU and

the CPU waits for the completion of the execution of the application on GPU.

Although OpenCL can map jobs on both CPU and GPU. This is the wastage of the

main resource (CPU) of the system by not performing any task. However, some

researchers addressed the problem and proposed some scheduling mechanisms.

Most of the scheduling mechanisms schedule a single data-parallel program [14]

that depends on code splitting and requires application profiling.

The longer execution time of applications is also the main concern while execut-

ing data-parallel applications. When only GPU executes jobs from the job pool,

kernels take a long execution time as the CPU is not taking part in application

execution. The overall execution time of the job pool can be reduced by assigning

jobs to both CPU and GPU simultaneously.

As CPU only performs the management of assignment of jobs to GPU and does not

take part in the actual execution of programs, this causes load imbalance between
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the computing devices [15]. A scheduler is required that can schedule programs to

both CPU and GPU device in a load-balanced manner so that both the computing

devices (CPU and GPU) can complete the processing at the same time. It will

reduce the energy consumption and heat dissipation as well as the overall execu-

tion time of the job pool. Researchers are trying to find new scheduling techniques

and applications and optimize existing ones to reduce the overall execution time of

jobs, maximize throughput and device utilization. In this research thesis, we are

designing a task scheduler that maps a pool of jobs on a heterogeneous system in

a load-balanced manner through a machine learning model, reducing the overall

execution time of jobs by considering the throughput and device utilization. In the

literature, most scheduling applications in heterogeneous systems are evaluated.

However, the following are some issues:

� Most of the scheduling techniques require code splitting. They split the pro-

gram to execute on CPU and GPU. This code-splitting results in additional

time overhead.

� Some researchers map a single job in a heterogeneous environment which

causes time overhead.

� To the best of our knowledge, no prior work attempts to do a load-balanced

task scheduling of the job pool of the heterogeneous system using a machine

learning approach.

1.4 Problem Statement

In a heterogeneous environment, the vast majority of the literature evaluated

scheduling tasks by using the data-parallel application code approach. Researchers

are trying to map jobs in a heterogeneous environment where they consider the

processing capability of the device, suitability of application, speedup of a job on

CPU GPU, etc. They are trying to map a suitable job on a suitable core means
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CPU-suitable job on CPU and GPU-suitable job on GPU and does not consider

the execution time of jobs.

1.5 Research Questions

The critical analysis of the literature survey has led to the following research gaps,

which have been focused on in this thesis:

1. How to analyze optimization techniques for execution time predictors through

machine learning?

(a) Which set of features play an important role to predict data-parallel

application execution time?

2. How to design and develop a load-balanced scheduler to achieve minimal

execution time, maximal throughput, and improved resource utilization?

1.6 Purpose

This research aims to propose a load-balanced task scheduler through machine

learning to map a pool of jobs to CPU and GPU in a heterogeneous system reduc-

ing the overall execution time of job pool, considering the utilization of devices.

1.7 Scope

In this research work, a load-balanced task scheduler through machine learning

for heterogeneous systems is proposed. The scope of this thesis is to elaborate

on existing scheduling techniques of heterogeneous systems which are based on

code features, device suitability, Speedup of devices, machine learning, etc. This

research will design a load-balanced task scheduler for a heterogeneous system

reducing the overall execution time of the job pool.
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1.8 Application

The research will assist the user to improve the overall performance in terms of

execution time, throughput, and resource utilization.

1.9 Definition/Explanation

1.9.1 CPU

Central Processing Unit is the main component of the computing system which

processes the instructions. The computer takes data as input the CPU process the

input data and the computer system give information from the data processed by

the CPU as information. The CPU runs the Operating system and other computer

applications. Each CPU in the computer system consists of at least one processor

that performs the actual calculations.

The early CPUs have only one processor, today CPU consist of many core and

multi core processing cores. A CPU having two cores is called dual core and

CPU having four cores is called quad core. The modern computer systems have

more than one CPU and number of processing cores. In the CPU cores, each core

have their own ALU registers, and cache. CPU is suitable for executing serial

instructions.

1.9.2 GPU

Graphic Processing Unit is the processing device made to execute and process the

graphics operations. The GPU can performs the calculations of both 2 dimension

array, 3 dimension array, graphics processing, video games, and parallel program-

s execution. The first desktop GPU was introduced by Nvidia in 1999 named

GeForce 256. The GeForce 256 can process 10 million polygons per second. The

GPUs are friendly in use and programmers uses the GPUs in their programs. Mod-

ern Operating systems and programs have the support of general purpose graphic
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processing units and many programmers uses GPU for non graphics calculations

as well that increases the overall performance of the computing systems. In GPUs,

instead of CPUs, more simple cores are used, but GPU cores are a little compli-

cated. The only feature that these small cores compromise is the probability of

execution out of sequence and branch estimation.

1.9.3 OpenCL

Open Computing Language is developed as an industry standard for data-parallel

applications for heterogeneous multi-core and many-core architectures. OpenCL

applications can be executed on multiple processors like CPU’s GPU’s FPGA etc.

and multiple hardware architectures like AMD, Intel, and Nvidia. OpenCL dis-

tribute the load of computing on different processing units that causes an increase

in the efficiency and performance of the programs. At first the GPUs were only

used for graphic processing but after the OpenCL came to market, the GPUs now

also perform the non graphics processing.

1.9.4 Machine Learning

Machine learning is the process to use statistics for finding the patterns in the

data. Machine learning (ML) is widely used for prediction purposes. In the sense of

machine learning, the learning refer to automatic method of looking for appropriate

representations of data.

There are two types of machine learning. One is supervised machine learning and

other is unsupervised machine learning. Supervised learning is type of machine

learning in which the output class/class labels are provided to a classifier for

training and testing the model. While unsupervised learning does not have output

class. Clustering is an example of unsupervised machine learning. Supervised

learning have further two types: classification and regression. Classification is

type of supervised learning in which the output class label is categorical (discrete)

while the regression have numerical (continuous) output class label.
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Machine learning refer to finding patterns present in data not to create patterns

in the input data

1.9.5 CUDA

Compute Unified Device Architecture is a programming model that is used for

mapping program codes on GPUs. It is built in C/C++ programming language

for only Nvidia architecture. CUDA is not as compatible as OpenCL.

1.9.6 Homogeneous Computing

Homogeneous computing is multi-core architecture in which similar processing

cores (CPU’s) are combined in an integrated circuit and execute a program or

multiple programs.

1.9.7 Heterogeneous Computing

Heterogeneous computing is that which uses more than one kind of cores or pro-

cessors. The heterogeneous system consists of multi-core CPUs and many-core

GPUs. In heterogeneous systems, CPU works as a host program and controls the

distribution of parallel workload and memory copying while GPU and performs

the parallel execution of programs

1.9.8 HSA

Heterogeneous System Architecture (HSA) is a cross-vendor series of requirements

that permit the convergence of CPU and GPU on the same bus, with shared

memory and tasks. It is capable of using multiple processor types like CPUs,

GPUs. HSA is a multi-core system that not only gains efficiency by integrated

cores but also by implementing advanced computing capabilities to cope with

complex tasks.
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1.9.9 PCA

Principal Component Analysis is an unsupervised machine learning technique,

used for the reduction of dimensions in a data-set.

1.9.10 CAP

Co-scheduling Asymptotic Profiling split dynamically workload of a task to CPU

and GPU, and predict the workload for next partition through profiling method.

CAP makes a balanced workload distribution between CPU and GPU with few

iterations.

1.9.11 SIMD

Single Instruction Multiple Data is system that perform or execute a single instruc-

tion for multiple data. SIMD perform simultaneously the same task operation on

multiple data. while MIMD, Multiple Instruction Multiple Data is system that

execute different multiple instructions with multiple data. In MIMD manner mul-

tiple tasks are performed with different data simultaneously.

1.9.12 OpenMP

Open Multi-Processing is an Application Program Interface (API), used by devel-

opers for parallel applications with shared memory. OpenMP supports C/C++

and FORTRAN on different architectures.

1.10 Dissertation Organization

The rest of the thesis document is divided into the following sections. In Chapter

2, we present comprehensive literature review related to job scheduling in het-

erogeneous environment and also a critical analysis of these research techniques.



Literature Review 12

Chapter 3, presents the proposed methodology to answer the research questions,

identified in this study. Chapter 3 also presents the details of the proposed system

architecture and performance evaluation metrics. Chapter 4 encompasses the de-

tails regarding implementation of the proposed load balanced job scheduler with

the detail of experimentation performed on a large set of application. Each ex-

periment is explained in detail and evaluation is performed comprehensively. The

Chapter 5 concludes the research work and suggested the future directions.



Chapter 2

Literature Review

Task scheduling is a non-trivial problem that involves efficient mapping of jobs

to the processors such that the total execution time of applications is minimized.

When there is a heterogeneous system in which each processing unit has a sustain-

able range of features, the scheduling becomes more complicated. Heterogeneous

systems focus on Central Processing Units (CPU) and Graphic Processing Units

(GPU) and are becoming effective due to the varying computing and performance

capabilities of these multi-core architectures. In most instances, CPUs are best

suited to execute latency-sensitive tasks and implement architectural innovation-

s such as branch prediction, out-of-order execution, and super-scalar capabilities

[13]. However many-core GPUs are more suitable for data-parallel and through-

put sensitive tasks, due to the vast multi-threading capabilities that are intrinsic

[5]. There is a small range of strong and complex cores in the CPU so the ef-

fective implementation of numerous types of applications is widespread, whereas

the GPU comprises a significant number of simpler cores specialized primarily in

the execution of data-parallel portions of the program. Therefore, it can also be

known to efficiently map computation to processors when designing the hetero-

geneity of computational systems. Programmers usually associate roles at either

a CPU device or GPU device due to which other devices stay idle e.g. if tasks are

allocated to a GPU, it causes the CPU to remain idle for just waiting to complete

the assigned tasks.

13
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Various scholars have suggested techniques for scheduling heterogeneous applica-

tions [5, 9, 16–18]. Kaleem et al., [9] Becchi et al., [16] and Lee et al., [17] split

program code between CPU device and GPU device. Boyer et al., [15] and Mun-

shi [19] map a single program to either CPU or GPU device while Tsog et al., [1]

Wen et al., [2] and Khalid et al., [13] schedules a pool of jobs to CPU device and

GPU device. Predictive modeling based on machine learning is also an effective

technique for optimizing parallel programs. Several machine learning classifiers

are trained from training data and have an adaptive behavior for varying plat-

forms [12, 20, 21]. Some scheduling techniques [4, 22–24] create load unbalancing

between CPU and GPU while scheduling because CPU only manages the kernel

execution and does not take part in actual computation. The CPU waits until the

GPU completes their execution and that wait is not desirable.

Ideally, a scheduler is required that can schedule data-parallel programs to CPU

and GPU in such a way that all processing devices complete their processing at

the same time. In this way, the overall execution time of the job pool will be

reduced, and also the energy intake and heat dissipation are decreased because

of reducing the idling state of processors. In a heterogeneous environment, the

optimum choice of devices is a key for all scheduler schemes.

According to Lee et al., [17] programmers mostly consider CPU for sequential

tasks and GPU for parallel tasks which causes load imbalances and wastage of

computing power. Lee et al., [17] introduced Maat, a library by which program-

mers build a parallel version of a kernel program that selects a load balancing

method and run the program on all available resources. This method utilizes the

same kernel code and needs no effort for extra programming.

Huchant et al., [25] automatically compiles and executes only single OpenCL pro-

grams on CPU-GPU considering issues of communications, load-balancing, and

load-variations. The technique consists of 2 approaches, Static approach and dy-

namic approach. In the static phase kernel code is partitioned and mapped to

different processing devices and the execution time of each kernel is noted. In

the dynamic phase, Partitioned kernel queuing is adapted to achieve optimized.
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This technique only maps a single kernel program while our approach schedules

multiple programs from a job pool.

According to Albayrak et al., [26] different kernels have different characteristics in

a multi-application environment. Some kernels execute faster on GPU while some

refer to run on CPU, so there is a need to map kernels to their proper devices to

improve overall performance. The proposed method is profiling based and profile

execution time and data dependencies. A greedy algorithm is used for scheduling

kernels to CPU and GPU.

In a study Belviranli et al., [7] Proposed Heterogeneous Dynamic Self-Scheduler

HDSS a scheduling mechanism that divides the workload among processing de-

vices. HDSS improves the execution time of the kernel. It has two phases, the

profiling phase, and the adaptive phase. In the profiling phase, each processing

unit has assigned some loop operations to evaluate the computation power while

in the adaptive phase the remaining loop operation is assigned on the base of pro-

cessing speed. Both profiling-phase and adaptive-phase help in load balancing at

CPU-GPU devices. The proposed scheduler does not split the jobs.

According to Choi et al., [8] Selection of devices for executing a data-parallel

program is a critical factor in determining the application performance. The

researcher estimated the execution time to determine application scheduling on

processing devices. The model is trained through the execution history of an ap-

plication. It also maps the new jobs to devices that have finished their job earlier.

The finish time is found through the total time of execution of the application and

execution time of the currently executing application. In contrast, the proposed

model predicts the execution time and also reduces the overall execution time of

jobs.

Grewe and O’Boyle [14] proposed a static feature and predictive modeling based

program which is designed to partition OpenCL programs on CPU-GPU systems.

Machine learning techniques like SVM are used for partitioning the code features
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automatically. The values of code features are normalized and computed as the

number of work-items divided by data transfer size multiplied by total operations

in program code. Principal Component Analysis (PCA) is applied for dimension-

ality reduction. The model is evaluated on GPU-friendly, CPU-friendly, and other

benchmarks while the proposed model predicts the execution time of jobs and

schedules them to reduce the overall execution time of the job pool.

In the study of Smart Multi-Task Scheduling for OpenCL Programs on CPU/GPU

Heterogeneous Platforms Wen et al., [2] Schedules multiple kernels from multiple

programs on CPU and GPU. It determines which device best utilizes the kernel

at run-time. The kernel speedup is predicted on the base of static code features

and also considers the input data size for scheduling of jobs on CPU GPU. It also

Extracts features through clang and LLVM and uses the SVM machine learning

classifier for the prediction of suitable devices In contrast the proposed model pre-

dicts the execution time of data-parallel applications.

Wen and O’Boyle [20] presents a run-time model that schedules the tasks on a

suitable CPU GPU system. The model predicts at run-time whether to merge

or schedule separately the OpenCL programs in a job pool using a decision tree

machine learning model. The model is based on both static code feature and dy-

namic code features. The model first separates the kernel to CPU device and GPU

device based on estimated device affinity and then determines whether to merge

or not the kernels. The merging of programs is done through the JIT compiler

and scheduling by a thin run-time layer.

Khalid et al., [13] schedules the given task in a heterogeneous system in a load-

balanced manner considering job requirements, device suitability, and also per-

formance predicted on a processor. CPU suitable and GPU suitable jobs are

combined in a pool of jobs based on the suitability of the device and sorted on the

base of predicted speedup. Load balancing mechanism is gained on the basis of

job processing requirements and device computation capabilities. Lower execution

time maximum throughput, higher device utilization is achieved through device
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suitability and mapping of jobs in a load-balancing manner. Users allocate Open-

CL programs, and the computational assessment module checks the computational

requirement through computational complexity and data size. The Kernel code

features extractor extracts the Code features from the OpenCL job and provides

a device suitability classifier to classify and label according to device suitability.

The OpenCL programs along with the code feature extracted and input data size

are provided to the speedup predictor component to predict speedup concerning

other devices. The application then sorts the CPU-GPU job pool on the basis of

device suitability where CPU suitable jobs pool is arranged in descending order on

the basis of speedup and GPU suitable jobs pool is arranged in ascending order.

After sorting, both job pools are combined for scheduling. E-OSched maps the

jobs to CPU-GPU jobs. The top jobs from the job pool are mapped to CPU while

jobs at the bottom are mapped to GPU.

Heterogeneous architecture has multi-core CPUs as well as many-core GPUs and

performs parallel execution [3]. Task scheduling in heterogeneous architecture is a

challenging job. An OpenCL framework is designed to perform task execution on

heterogeneous architecture. Many features affect the scheduling of a task. Tasks

like out-of-order execution, branch prediction, etc. are suitable for CPU while par-

allel execution of tasks is more suitable on GPU. The main theme of this research

is to map OpenCL applications based on process capability and application/de-

vice suitability and is achieved through a machine learning classifier that predicts

the computational compatibility of processors. LLVM based analyzer is used for

feature extraction and tree-based method for classifier selection.

Resource Aware Load Balancer for Heterogeneous Cluster [5] RALB-HC is a su-

pervised machine learning-based approach that distributes the workload in multi-

node heterogeneous computing environments based on the computing capabilities

of resources and needs of applications computing. The model considers the de-

vice suitability, the expected speedup, and the load balancing for job mapping

in heterogeneous environments. The RALB-HC technique works in 2 phases: 1)

Mapping of jobs is based on available resources. 2) Load balancing for a higher
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resource utilization ratio. It automates decision about jobs for a specific comput-

ing device. Synthetic and Google-like workloads are produced using AMD and

Polybench benchmark, For testing performance. RALB-HC reduces the execution

time, increases the utilization of resources, and improves the throughput.

The work of Belviranli et al., [7] is based on distributing OpenCL kernels among

CPU and GPU in heterogeneous architecture. Supervised machine learning al-

gorithm split a single task into multiple kernels and analyze the static program

feature and predict a ration for distribution of kernels. The architecture also pro-

vides state information about the system. The algorithm assigns 0 or 1 to devices

and maps them in the heterogeneous platform. In this architecture partition can

be done through machine learning as well a user can also do it manually. The

architecture takes as input the static partitioned which is the relationship of static

program feature and a specific split ratio and gives information about split ration

as output. For evaluation, Weka toolkit is used.

OpenCL can execute a program on multiple devices like CPU, GPU, FPGA, etc.

[11]. Moren and G¨ohringer estimates the best application speed-up for each

device using a machine learning classifier. It is based on dynamic code-feature

extraction through the LLVM framework. Prediction is performed on multiple

parallel applications. The accuracy of the model depends on prediction mecha-

nisms and scenarios. The limitations of this approach are it is platform-dependent

and does not work properly on complex code. It only supports simple arithmetic

operations like addition, subtraction, multiplication, etc., and is not valid for com-

plex operations. It also takes more time as compared to static code features.

Machine learning classifiers do not perform well in high-density computing require-

ments because of the execution of instructions in a sequential way [27]. A machine

learning model is designed for which the GPUs are used for training purposes and

FPGAs are used as inference models. A model converter is also defined between

the training model and inference model. The approach is evaluated through two

use cases. First through constitutional neural networks and second through deep
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neural network regression.

Programmers write the code in a way to distribute the workload on processing

devices and also distribute the data among different devices [28]. Mostly pro-

grammers maps suitable application to suitable device that causes load imbalance

and under-utilization of the processing devices. They try to map CPU suitable

job on CPU device and GPU suitable job on GPU device. To remove the bur-

den of data management and device connectivity from programmers, EngineCL

is extended with the help of OpenCL and also supports the FPGA devices. The

proposed model performs management of data as well overlapping of commands

and performance is improved by 96%. It also gains 36% of energy-delay. Six d-

ifferent benchmarks are used for experimentation purposes and executed for each

benchmark application with different data input size. Results are obtained with

five methods i.e. static, dynamic, HGuided, Performance, and Energy Consump-

tion. Performance up to 96% increase.

Simhash [29] is a commonly used tool capable of attributing a bit string exis-

tence to a word so that identical texts have identities that are similar. A real-time

solution for a simhash measurement in OpenCL is proposed in this research and

also illustrates how multi-core CPUs, GPUs, and FPGAs can make use of it.

Simhash is implemented on three HPC platforms: Multi-core CPU, GPU, and

FPGA. Random text generation methodology is used for evaluation. The experi-

ments are performed on Multi-core CPU, GPU, and FPGA.

Wang et al., [23] designed Co-scheduling Asymptotic Profiling that is a two-phase

scheduling method designed for heterogeneous computing. A static partitioning

approach is used in the first step to assign a small amount of workload fairly to

both CPU and GPU. The execution time is measured for the allocated workload.

Based on the previous execution time of workload, the amount of work is doubled

on a faster device. The scheduling is carried out with the elevated workload before

the difference between the present and former executions are fewer than the pre-

defined threshold. In the second step according to computing units, the remaining

workload is split as per the first step of the sampling.



Literature Review 20

Table 2.1: Critical Analysis of Literature Review

Ref App FeatureKernel Benchmark Performance ML
[14]
Grew
et al.
2011

47 13 Single
Parboil N-
vidia

1.57% speedup
Support
Vector
Machine

[2]
Wen
et al.
2014

35 16 Multi

AMD
Nvidia
Parboil
Polybench

1.5 time reduc-
tion in TAT

Support
Vector
Machine

[10]
Ghose
et al.
2017

34 15 Multi
Nvidia
Polybench

-
Random
Forest

[20]
Wen
et al.
2017

20 - Multi
Parboil
Polybench

36% Perfor-
mance increase

Decision
Tree

[4]
Khalid
et al.
2018

18 - Multi

AMD
parboil
Polybench
Rodinia

8.1% reduction
in exec time.
7.07% through-
put

-

[11]
Moren
et al.
2018

- 11 Single
AMD
Nvidia
Polybench

61% increase in
accuracy

Random
Forest

[5]
Ahmed
et al.
2019

930 30 Multi
AMD
Polybench
Own

31% reduction
in exec time.
67.8% utiliza-
tion.
147.35%
throughput

Gradient
Boosting

[13]
Khalid
et al.
2019

199 23 Single

AMD
Parboil
Polybench
Rodinia

38% reduction
in exec time

Random
Forest,
Gradient
Boosting

[3]
Ahmed
et al.
2021

930 23 Multi
AMD
Polybench

R2:0.76
F-measure:
0.91

Decision
Tree,
Naive
Bayes,
Random
Forest,
KNN
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2.1 Critical Analysis

After the comprehensive analysis of different approaches, there are multiple tech-

niques for scheduling in heterogeneous environment. Ghose et al., [11] does not

consider the load balancing for mapping jobs to the scheduler. Wen et al., [2],

Khalid et al., [4], Ahmad et al., [5], and Khalid et al., [13] have reduced the exe-

cution time of jobs but some of them do not consider load balancing while some

have not used the machine learning classifiers. The proposed model predict the

execution time of jobs using machine learning classifiers, and creates a job sched-

uler to schedule jobs from the job pool in heterogeneous system considering the

reduction in the overall execution time of jobs, increase in the throughput, and

utilization of the processing device.



Chapter 3

Methodology

3.1 Introduction

Developers maps applications on CPU and GPU in heterogeneous computing en-

vironment. However, it is difficult to make a decision about mapping a job to a

specific computing device (CPU GPU). There are a number of scheduling tech-

niques and models for mapping jobs on CPU GPU processors. The scheduler

have a number of jobs and makes the decision of mapping the jobs to the avail-

able computing devices. The decision should be balanced to achieve maximum

throughput and utilization of devices. It is difficult for a scheduler to map ap-

plications on CPU and GPU in heterogeneous system and the decision become

more critical while mapping jobs from a pool of jobs [4]. The mapping of applica-

tions on multiple heterogeneous devices is crucial for researchers therefore, for the

optimal distribution of jobs, an automated approach should be developed. Most

programmers uses the default scheduling strategy for mapping jobs on heteroge-

neous system. In this strategy, the CPU executes the serial portion (host part)

of the program while GPU runs the parallel portion (kernel part) of the program.

This strategy causes CPU idleness as all computation is performed by GPU. The

waiting time leads in the wastage of valuable power-consuming CPU energy. It

is challenging for the developer to grasp the essence of each task and choose the

22
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Figure 3.1: Methodology

device according to the nature of job and hardware specifications. It is a critical

task to map applications according to their suited devices. To overcome this prob-

lem, we come up with a predictive model based on machine learning that predicts

the execution time of OpenCL applications on CPU device and GPU device. The

predicted execution time is used by the job allocation scheduler for the optimum

workload mapping. The load-balanced task scheduler for heterogeneous systems

based on machine learning is proposed that utilizes the predicted execution time

of programs and then balances the load among the available processing devices.

To measure the efficiency of the proposed technique, the detailed methodology is

presented in figure 3.1.

The user submit data parallel OpenCL programs and the proposed scheduling

system assess the submitted jobs by extracting the static code features. Correla-

tion between the features is find out through correlation analysis. Important and

influential features are selected for training of the machine learning classifier. The

static code features and the dynamic workload of the jobs is used for predicting the

execution time of each job for both CPU and GPU. The machine learning model

uses the static code features and dynamic code features and predict the execution
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time of each job on CPU device and GPU device. For scheduling jobs on CPU and

GPU a scheduler is designed. The scheduler uses the predicted execution time of

jobs and maps each job to their suitable executing device and balancing the load

between both CPU and GPU. The scheduler leads to reduce the overall execution

time of the submitted jobs and gain utilization of the processing devices.

3.2 Work Stealing Scheduling Strategy

Work stealing is a scheduling algorithm that is widely used for the mapping of pro-

grams in heterogeneous environment having multi-core processing devices [31, 32].

The basic theme of the work stealing scheduler is distributing the workload on the

idle processing devices which ultimately causes the reduction in overall execution

time of jobs and utilization of the processing devices. In work stealing scheduler,

each processing device have a double ended queue (deque) to hold the tasks as-

sign to it. The processing device gets the processes from the deque in a Last in

First out (LIFO) manner. The jobs in the deque are sorted in descending order

on base of their execution time. All the jobs are put in the deque and the pro-

cessing devices take one job at a time from the deque. When a processing device

executes all their assigned jobs and the deque of a processing unit become empty,

the device become thief and steal a job from the bottom of another processing

device deque which become victim. When the thief processor execute the job and

more jobs are present in other processor deque, the thief processor steal another

job from the bottom of the deque. This process remains until all the available

processing devices executes all the available jobs. The work stealing algorithm

reduces the process migration as compare to other scheduling algorithms. It is

because the migration of a process from one deque to another cannot take place

when all the processing devices have jobs for execution. The stealing of jobs starts

when a processing device executes all their assigned jobs. The complete hierarchy

of the work stealing scheduler is depicted in figure 3.2. When the CPU process-

ing unit completes the execution of all the assigned jobs, it becomes thief and

steal the jobs from the deque of the GPU. The strategy of work stealing is widely
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Figure 3.2: Work Stealing Strategy

used in scheduling jobs to processing devices. The benefit of the work stealing

scheduling scheme is that when a processing device completes their execution,

and there are programs that are to be executed on another processing device, it

takes the programs from that processing device having jobs, by self. It means a

processing device having more jobs have to only execute the programs. In this
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research the concept of work-stealing scheduling algorithm is used. Two deque

are created for the assignment of the job to their executing device. One deque

is created for the jobs to be executed on CPU and other deque for the jobs to

be executed on GPU. First of all the execution time of jobs on CPU as well as

on GPU is predicted through machine learning. For finding the suitable device,

for each job the predicted execution time of GPU (G time) is subtracted from

predicted execution time of CPU (C time). The scenario is depicted in figure 3.3.

The difference (D time) is sorted in ascending order. The D time consists of both

positive and negative values. A job having a negative D time value is considered

as CPU suitable as it have less predicted execution time on CPU. A job having a

positive D time value is considered to be GPU suitable as it have more execution

time on CPU. A job having D time value zero is considered as CPU suitable as in

most of the cases the CPU remains idle so if a neutral job is assigned to GPU it

causes increase in overall execution time of job pool and idleness of CPU processor.

D time = C time – G time

The jobs sorted on the base of D time are moved to the job pool where two deque

are maintained. Deque is open ended queue that hold the jobs for the devices.

One deque have the jobs having negative values and are suitable for CPU while

the other deque have jobs having positive values and are suitable for GPU. The

work stealing technique is applied for assigning jobs to processing devices from the

both deque. When a processing device completes their execution of all assigned

jobs, it steals the jobs from another processing device. Let say CPU completed

the execution of the jobs available in the deque, and GPU have jobs remaining in

the deque, the CPU will become thief and steal a job from the end of the deque of

GPU. CPU will take the job from end of the deque because jobs in deque are sorted

in descending order and at the end of the GPU deque, the jobs have less difference

in between the predicted execution time on CPU and GPU. This small difference

causes small amount of penalty. The penalty is because of executing a non-suitable

job on a non-suitable device. It is for sure that executing a non-suitable job with

maximum D time on a non-suitable device causes maximum penalty.
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Figure 3.3: Scheduler Job Pool

3.3 Evaluation Benchmark

Two types of evaluation metrics are evaluated in this work. For evaluation of

machine learning classifiers four evaluating metrics R-Squared (R2) , Root Mean

Square Error(RMSE), Mean Square Error (MSE), and Mean Absolute Error (MAE)

are evaluated. For evaluating the efficiency of work stealing scheduler the execu-

tion time, the utilization of the devices and throughput of the processors of the

proposed work stealing scheduler is compared with 10 different metrics. The met-

rics are CPU Only, GPU Only, FCFS, device suitability, Input size, and Alternate

assignment. All the evaluating metrics of machine learning and scheduler are:

3.3.1 Mean Absolute Error (MAE)

Mean Absolute Error (MAE) shows the difference of the actual values and pre-

dicted values. It is the average absolute difference on the data-set. The formula

of Mean Absolute Error is:

MAE = 1
N

∑N
i=1 |yi− y ∗ |
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3.3.2 Mean Square Error (MSE)

Mean Square Error also shows the difference between the actual values and pre-

dicted values. It is the average squared difference on the data-set.

MSE = 1
N

∑N
i=1(yi− y∗)2

3.3.3 Root Mean Square Error (RMSE)

Root Mean Square Error is the square root of the Mean Square Error.

RMSE =
√
MSE =

√∑N
i=1(yi− y∗)2

3.3.4 R2

It is co-efficient of determination. It shows the co-efficient that how accurate the

predicted values fit as compared to the actual values. R-Squared is normally in

the range of 0 and 1. The higher the R-Squared value the better the model is and

smaller the R-Squared value inferior the model is. The formula of the R-Squared is

R2 = 1−
∑

(yi−y∗)2∑
(yi−y−)2

yi - Actual value

y∗ - Predicted value of y

y− - Mean value of y

The following Six performance metrics are used for the evaluation of performance

of the proposed work-stealing scheduler. These evaluation metrics are:
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3.3.5 CPU Only

In CPU Only all the jobs are executed only on CPU device. Whether the jobs

are CPU suitable or GPU suitable, all are executed only on CPU device. It is

considered as a baseline and is used as standard for the evaluation of the proposed

work-stealing scheduler.

3.3.6 GPU Only

In GPU Only all the jobs are assigned to only execute on GPU device whether

the jobs are CPU suitable or GPU suitable, all are assigned to GPU device only.

The GPU Only is also considered as baseline and standard for evaluation of the

work-stealing scheduler.

3.3.7 First Come First Serve

In First Come First Serve (FCFS) evaluating metric the jobs are assigned to the

processing devices on first come first serve base. It is to be noted that in FCFS

based the concept of device suitability becomes invalid.

3.3.8 Device Suitability

In device suitability evaluation the jobs are assigned to their suitable devices.

Suitable device mean the job have less execution time on that device.

3.3.9 Alternate Assignment

In alternate assignment the jobs are shuffled and assign alternate job to the pro-

cessing device. In this research the jobs are randomly shuffled 5 times i.e. Alter-

nate Assignment 1, Alternate Assignment 2, Alternate Assignment 3, Alternate

Assignment 4, and Alternate Assignment 5 and their execution time is noted.
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3.3.10 Input Size

All the jobs are sorted in descending order on the basis of their input size. Half of

the jobs from the top of the queue are assigned to GPU device while the remaining

jobs are assigned to CPU device. The jobs having largest values of input size are

executed on GPU device while jobs having smallest input size are executed on

CPU device.



Chapter 4

Results and Discussion

4.1 Introduction

This chapter cover the details of the machine learning prediction model and the

job scheduler. In this research, two benchmark suite Polybench benchmark and

AMD benchmark suite are executed for experimentation purposes. Polybench is a

set of computation kernels used to test the performance of compilers and related

applications, such as matrix multiplication, 2D or 3D convolution, or linear equa-

tion solver. Mentioned application is considered as a core of many applications

for high-performance like image processing [33]. These benchmark suits are exe-

cuted with different input size on CPU device as well on GPU device with same

input size. The static code analyzer is used for extracting the code features from

the programs of the OpenCL framework. Two data-set are generated from the

static code features and dynamic workload along with the execution time of the

program on processing devices. One data-set contain the feature set and the pro-

gram execution time on CPU device and the other data-set contain the feature set

with program execution time on GPU device. The important features are selected

from the data-sets through correlation analysis and tree-based feature importance

induction. The machine learning classifiers are applied on both the data-sets for

the prediction of the execution time of the OpenCL programs. The predicted

31
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execution time is further used by the work-stealing scheduler. The work stealing

scheduler assigns the jobs to the processing devices in such a manner that reduces

the overall execution time of the job pool and also utilizes the processing devices.

The proposed scheduler is evaluated on the base of execution time and utilization

of devices metrics. Each experiment is explained in detail and the evaluation is

comprehensively performed.

4.2 Experimental Setup

In this research, the experimentation are performed on multiple systems. The

experimentation of the machine learning classifier are performed on laptop having

windows operating system installed. The specifications of the employed system is

mentioned in table 4.1

Table 4.1: Device Specification of Prediction Model

Device Specification

Operating System Windows 10 pro

CPU Intel® Core� M-7Y30

System type 64 bit

Processor 1.00 GHz, 1.6 GHz

Primary Memory 8.00 GB

Secondary Memory 1 TB

For the implementation of the machine learning model, the Python programming

language is used. Python is widely used for the predictive analysis and data

science related tasks of both qualitative and quantitative type of data. For the

implementation of the model, the PyCharm version 2019.2.3 professional edition

toolkit and Jupyter notebook IDE along with Python version 3.6 are used. The

pandas, numpy, seaborn, matplotlib and sklearn libraries of python are used for

the implementation of the machine learning predictor. Three different regression

models multiple linear regression, Random forest, and gradient boosting are

implemented on two type of data-sets. One data-set having all the extracted
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features, while other data-set having only important features. Linear regression

model is implemented when data is in linear form. The data used in this thesis is

not in linear form that’s why the result of the multiple linear regression model is

not so good.

The experimentation of scheduler and the generation of the data-set, a CPU-GPU

system having Intel Core i5-4460 CPU and an NVIDIA GeForce GTX 760 GPU.

The experimentation are performed on Linux Ubuntu 16.04 Operating system.

The specifications of the setup are mentions in table 4.2

Table 4.2: Device Specification of Scheduler

Device CPU GPU

Architecture Haswell Kepler

Processor Number i5-4460 GeForce GTX 760

Number of Cores 4 1152

Number of Thread 4 -

Memory 8.00 GB 2 GB

Memory Bandwidth 25.6 GB/s 192.2 GB/s

Performance 409.6 GFLOPS 2257.9 GFLOPS

ISP 32 2

Memory Speed 1600Mhz 6.0 Gbps

OpenCL SDK Intel SDK for OpenCL 2016 CUDA 8.0

Compiler GCC 5.4.0 Nvcc

4.3 Application Data-set

The application data-set was collected from two benchmark suits i.e. Polybench

benchmark and AMD benchmark. Both the polybench and AMD benchmarks are

widely used for research purposes in heterogeneous system [4, 5, 13]. A total 20

applications were executed with different input data size and a total 1165 jobs

were created. The details of the benchmark suits are given in table 4.3.

The sample of the data-set generated is mentioned in figure 4.1. The Application

is from the two benchmark suite polybench and AMD. 3mm, gemm, and mvt
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belongs to polybench suite while the floyd, warshal application belong to AMD

suite.

Figure 4.1: Experimental Result of Benchmark Application Execution

The data size is the input size at which the application is executed. The CPU

time is the executed time of the application on CPU device and GPU time is

the executed time of Application on GPU device. A total of 1165 tuples are

executed on both CPU device and GPU device with different input size. first each

application is executed with the increasing power of 2 i.e. 20, 21, 22, 23, 24 and

so on. When the application program is no more executing with large input size,

then the execution is started with the power of 3 i.e. 30, 31, 32, 33, 34. When the

application program is not able to execute at large 3 power value, the programs

are executed with a random number. A total 13 applications from Polybench and

7 applications from AMD suite are executed with different input size.

The details of the benchmark suite, different benchmark applications that are

executed and the maximum range of the input data size of each application is

mentioned in table 4.3. The AMD benchmark applications are executed with large

input sizes while Polybench benchmark applications are comparatively executed

with small input size The fdtd-2d application have less execution time on GPU

device at every input size. The Atax application have less execution time on

CPU device at every input size. The other application programs i.e. gemm, mvt,
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bicg, floyd warshal have less execution time on CPU at some input size and less

execution time on GPU device at some input size.

Table 4.3: Detail of Benchmark Suite and Input Size

Suite Benchmark Applications Input Data Size

Polybench GEMM 1 – 4600

Polybench 3MM 1 – 4600

Polybench GESUMMV 1 – 14500

Polybench ATAX 1 – 22000

Polybench 2MM 1 – 22000

Polybench MVT 1 – 15500

Polybench BICG 1 – 22000

Polybench CORRELATION 1 – 2800

Polybench COVARIANCE 1 – 2600

Polybench FDTD-2D 1 –12000

Polybench GRAMSCHMIDT 1 – 8800

Polybench SYR2K 1 – 2200

Polybench SYRK 1 – 3000

AMD Binomial Option 1 – 20000000

AMD Bitonic Sort 512 – 20000000

AMD Discrete Cosine Transformation 1 – 8192

AMD Fast Walsh Transform 1 – 100000000

AMD Floyd Warshall 1 – 15500

AMD Matrix Multiplication 128 – 12500

AMD Matrix Transpose 1024 – 10000000000

The data-set generated from these applications were used in machine learning

prediction analysis. The applications from the two benchmarks i.e. Polybench and

AMD covers the domain of image processing, pattern recognition, data mining,

Stencils, and linear algebra. For training the machine learning model the data-set

is shuffled randomly to achieve maximum accuracy. The details of the data-set is

mentioned in table 4.9.
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4.4 Feature Extraction

In this section the code feature extraction mechanism is explained. The static code

analyzer is designed for the extraction of features from the kernel code of OpenCL

programs of two benchmark suite i.e. Polybench and AMD. The extracted features

set shows the behavior of the programs. The aim of the extraction of features

from the code is to collect the attributes of the OpenCL programs from both

benchmarks. The Clang (front end) compiles the code of the OpenCL programs

to ensure the code is error free. The LLVM passes extracts the code features.

Figure 4.2 shows the complete methodology of extraction of the features from the

OpenCL programs.

Figure 4.2: Code Feature Extraction

In this research, a total of 22 features are extracted from the OpenCL application

programs. The extracted features and the input data size are provided to the

machine learning predicting classifiers. The input data size is type of feature

an OpenCL program is executed with multiple input size for generating of the

data-set. For example, Atax, an OpenCL application is executed with different

input Size starting from 1 and maximum of 22000 on both CPU device and GPU

device. These features consists of number of loops, number of int data type,

number of float data type, total number of functions, total number of blocks,

total number of instructions, total number of loops etc. Table 4.4 consists of all

the features extracted from OpenCL programs through clang and LLVM. The

extracted code features and the workload of the jobs are provided to the execution

time prediction classifier and classify the submitted jobs, according to execution

time. The predicted execution time is further utilized by the load balancing job

scheduler.
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Table 4.4: Static Code Features

S.No Feature Name

1 Total number of Return Statements

2 Total number of Control Statements

3 Total number of Allocation Instructions

4 Total number of Load Instructions

5 Total number of Store Instructions

6 Total number of Multiplication (Float Data type) Operations

7 Total number of Multiplication (Integer Data type) Instructions

8 Total number of Division (Float Data type) Instructions

9 Total number of Division (Integer Data type) Instructions

10 Total number of Condition Check Instructions

11 Total number of Addition (Float Data type) Instructions

12 Total number of Addition (Integer Data type) Instructions

13 Total number of Subtraction (Float Data type) Instructions

14 Total number of Subtraction (Integer Data type) Instructions

15 Total number of Function Call Instructions

16 Total number of Functions

17 Total number of Blocks

18 Total number of Instructions

19 Total number of Float Operations

20 Total number of Integer Operations

21 Total number of Loop Operations

22 Total number of Loops

4.5 Feature Selection

Feature selection find out the importance of the features with respect to the class

label of the data-set (CPU time or GPU time) and correlation of each feature with

another feature. The selection of important feature is very crucial because it causes

reduction in over fitting, improves the accuracy, and reduces the training time of
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the classifier. The Two feature selection methods, feature correlation analysis and

the tree based importance are adopted in this research. The Pearson correlation is

a filter based correlation analysis method that is widely used for finding correlation

between features. We used the Pearson correlation method for feature correlation.

The two features are correlated if change in value of one feature causes change

in another feature value. If increase in one feature value causes increase in other

feature or decrease in one feature value causes a decrease in another feature value,

the two features are correlated positively, and if decrease in value of a feature causes

increase in other feature value or increase in one feature value causes decrease in

another feature value, the two features are correlated negatively. Using highly

correlated features for training purposes causes lower prediction accuracy. In this

research Heatmap is used for finding the correlation between features. Figure 4.3

shows the matrix of the correlation of features employed in table 4.4. The two

features having value 1 or tends to 1 are highly correlated and features having

values negative or tends to a negative value are not as much correlated. The

following features have positively or negatively correlation with other features.

� Data size

� Total number of Return Statements

� Total number of Allocation Instructions

� Total number of Load Instructions

� Total number of Multiplication (Float Data type) Operations

� Total number of Subtraction (Integer Data type) Instructions

� Total number of Function Call Instructions

� Total number of Float Operations

These features are also marked as important by Tree based feature selection as

shown in figure 4.4. The following features have neutral relation with all other

features. These type of features can influence the result.
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Figure 4.3: Correlation Analysis of OpenCL Features

� Total number of Integer Operations

� Total number of Loop Operations

� Total number of Blocks

The following features are low or not influencing the class label so therefore all

these features are excluded from the data-set.

� Total number of Control Statements

� Total number of Multiplication (Integer Data type) Instructions

� Total number of Condition Check Instructions

� Total number of Addition (Float Data type) Instructions
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� Total number of Addition (Integer Data type) Instructions

� Total number of Store Instructions

� Total number of Division (Float Data type) Instructions

� Total number of Division (Integer Data type) Instructions

� Total number of Subtraction (Float Data type) Instructions

� Total number of Instructions

Figure 4.4: Tree-Based Feature Values

After the correlation analysis of the features and importance of features, the im-

portant and influential features are selected that are used by the machine learning

model for prediction of the execution time on CPU device and GPU device. The

decision tree based importance of feature method is used for finding importance

of a feature. The Classification and Regression Trees (CART) [34] of decision

tree provide a value to each feature on the basis of the Information Gain. The

tree-based method assign a value between 0 and 1 to each feature according to

their importance. The importance of a feature is that how much the feature is
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influencing on the class label of the data-set. A feature value 1 or approaching to

1 means the feature is important. The feature having value zero or approaching

to zero means the feature is not that much important. The table 4.5 are the fea-

tures marked as important by the tree-based model. In this research thesis the

top features from the feature set are then selected for the machine learning-based

prediction of execution time for CPU device and GPU device. The top features

along with their score is shown in figure 4.4

Table 4.5: Important Features from the Feature Set

S.No Feature Name

1 Data Size

2 Total number of Return Statements

4 Total number of Allocation Instructions

5 Total number of Load Instructions

7 Total number of Multiplication (Float Data type) Operations

8 Total number of Addition (Integer Data type) Instructions

16 Total number of Subtraction (Integer Data type) Instructions

17 Total number of Function Call Instructions

21 Total number of Float Operations

4.6 Machine Learning Model Selection

This section explains the machine learning prediction classifier selection. Machine

learning is hot area of nowadays research and is widely used for prediction purpos-

es. There are two types of machine learning. One is supervised machine learning

and other is unsupervised machine learning. Supervised learning is type of ma-

chine learning in which the output class/class labels are provided to a classifier for

training and testing the model, While unsupervised learning does not have output

class. Clustering is an example of unsupervised machine learning.

Supervised learning have further two types: classification and regression.

Classification is type of supervised learning in which the output class label is cat-

egorical (discrete) while the regression have numerical (continuous) output class
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label.

In this research regression models are used as the output class i.e. CPU execution

time and GPU execution time is a numeric value. A data-set is generated from the

extracted static code features and dynamic workload. The data is pre-processed

before using for training of the classifier for the prediction of the execution time.

The complete working strategy is depicted in figure 4.5.

Figure 4.5: Machine Learning Model

After the Pre-processing completes, feature engineering is applied on the data-set

in the feature selection portion. The feature engineering select important and in-

fluential features from the available extracted features for training and testing of

the classifiers.

A detailed explanation of feature selection is discussed in section 4.5. Three ma-

chine learning regression models, Multiple Linear Regression, Random Forest Re-

gression, and Gradient Boosting Regression models are trained for the prediction

of the execution time of jobs on CPU device and GPU device. The multiple linear

regression does not fit well on training and testing data because the data is not in

linear form. The details of multiple linear regression model are depicted in table

4.6. The random forest model fits very well on training and testing models, and is

applied for the prediction of the execution time of OpenCL applications on CPU

device and GPU device. The number of trees in random forest model is 1000 and
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Table 4.6: Multiple Linear Regression Model Specification

Parameter Shape

Test size 0.2

Train size 0.8

Random state 42

Regressor LinearRegression()

the random state is kept 45. The details of random forest model are depicted

in table 4.7. The predicted execution time for CPU device and GPU device by

the random forest model is further utilized for the designing of the work-stealing

scheduler. The random forest model is further utilized because it has maximum

evaluating values than multiple linear regression and gradient boosting regression

models.

Table 4.7: Random Forest Model Specification

Parameter Shape

Test size 0.2

Train size 0.8

Random state 45

Regressor RandomForestRegressor()

n estimators 1000

The Gradient Boosting model also gives maximum accurate results. Gradient

boosting model has good results over the multiple linear regression model but

have lower results from random forest model. Therefore we only uses the results

of random forest model further for the prediction of the execution time of jobs on

CPU device and GPU device.

The gradient boosting model is based on trees. The n estimators in the table 4.8

is the total number of trees used in the model. The max depth means the number

of nodes in each tree. In the model the value of max depth is 4. The value of

minimum split in the model is 5 and the learning rate is 0.01. The details of

gradient boosting is mentioned in table 4.8.
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Table 4.8: Gradient Boosting Model Specification

Parameter Shape

Test size 0.2

Train size 0.8

Random state 44

Regressor GradientBoostingRegressor()

n estimators 1000

Max depth 4

Min sample split 5

Learning rate 0.01

4.6.1 Model Training and Testing

Two data-sets CPU dataset and GPU dataset are created and used for training

and testing the machine learning model for the prediction of the execution time of

jobs on CPU device and GPU device. One data-set contain values of all features of

benchmark applications and their execution time on CPU device, while other data-

set contain all feature values and execution time on GPU device. Two random

forest models are trained, CPU model is trained on CPU dataset for the prediction

of the execution time of jobs for CPU device while GPU model is trained on

GPU dataset for the prediction of the execution time of jobs for GPU device.

Both the models are executed on two data-sets, one data-set having values of all

23 features and one data-set having only the important and influencing features

determined by correlation analysis and tree-based information gain ratio. The

complete details of the three machine learning models is given in table 4.10.

The data-set contain 1165 tuples and 25 columns. The data-set is split in to two

parts with the ratio of 20% and 80%. Table 4.9 shows the complete details of the

data-set. The 80% of the data-set along with the output class label is provided to

the model for training purpose. The remaining 20% is used for testing the trained

model. The testing is performed as only the features values are provided to the

model and the model predict the output class label for it.The training and testing

fitness of the model is depicted in figure 4.6.
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Table 4.9: Detail of Data-set used for Prediction

Set Instances Percentage

Training set 931 80%

Testing set 234 20%

Complete data-set 1165 100%

The predicted class labels through the random forest model are compared to the

actual values of the testing data-set. Figure 4.7 shows the graph of actual and

predicted values.

Figure 4.6: Training and Testing Fitness

The figure 4.8 shows the correlation of the actual and the predicted values of the

machine learning model. When the data is closely fitted on the linear line, it in-

dicates that the model have predicted the class labels with maximum accuracy.
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Figure 4.7: Actual and Predicted Values

The error rate of the predictive models in machine learning for regression are

assessed by evaluating multiple performance metrics like R2, Root Mean Square

Error (RMSE), Mean Square Error (MSE), and Mean Absolute Error (MAE).

The concept of evaluation in regression is that comparing the predicted values

with the actual target values. The table 4.10 shows the comparison of three ma-

chine learning models i.e. Multiple linear regression, random forest, and gradient

boosting regression model. This table shows the comparison of the evaluation of

the machine learning models on four different data-sets i.e. C all column means

all feature values and the CPU execution time values, C Reduced column shows

the execution time of CPU with reduced features, G All is the data-set having all

features and GPU execution time, and G Reduced is the dataset having only im-

portant features with GPU execution time. The reduced features mean only that

features marked important and influential by the tree based information gain.

It is noted in the experiments that multiple linear regression model performs well

on all features while the random forest model and gradient boosting model im-

proves their R2 value and other evaluating metrics values by reducing the number

of features. Because of the improvement in results only important features are

further utilized by the random forest and gradient boosting models.
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Figure 4.8: Actual and Predicted Values Fitness

R2 is coefficient of determination. It is statistical measure showing the coefficient

that how accurate the predicted values fit as compared to the actual values. R2

is normally in the range of 0 and 1. The 0 mean 0% and 1 mean 100% but the

percentage does not shows the accuracy. It only indicates the fitting of actual and

predicted values. The higher the R2 value the better the model is and smaller the

R2 value inferior the model is. In our case the random forest and gradient boosting

models fits very accurately as compare to multiple linear regression. The random

forest and gradient boosting models have almost same values but multiple linear

regression model is 88% lower than both models. It is because the data is not in

linear form. The figure 4.9 shows the comparison of R2 values of multiple linear

regression, gradient boosting and random forest model.
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Figure 4.9: R-Squared Comparison

Table 4.10: Machine Learning Models Specification

Classifier EM C All C Reduced G All G Reduced

MLR R2 0.31 0.157 0.314 0.166

MLR MAE 26 38.18 5.24 7.56

MLR MSE 5934 7180 227.8 277

MLR RMSE 77 85 15.1 16

RF R2 0.99 0.99 0.99 0.99

RF MAE 1.97 2.103 0.339 0.353

RF MSE 73.35 35.37 2.61 2.64

RF RMSE 8.56 5.95 1.62 1.63

GB R2 0.924 0.96 0.966 0.988

GB MAE 8.04 3.94 1.018 0.676

GB MSE 948.6 311.77 15.56 4.071

GB RMSE 30.8 17.66 3.95 2.018

The mean absolute error (MAE) is evaluation metric used for the evaluation of the

results of regression models. MAE is the sum of the absolute differences between

the actual values and predicted values. Figure 4.10 is the representation of MAE.

In the case of mean absolute error the lower the value the precise the model is

and vice versa. In our prediction analysis the random forest have the minimum
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value among gradient boosting and multiple linear regression models. The random

forest have 44% small value from gradient boosting and 80% from multiple linear

regression. The figure 4.11 shows the comparison of the mean square error values

Figure 4.10: Mean Absolute Error Comparison

of the three machine learning models. It shows that the multiple linear regression

have the maximum value among the three models. The random forest model again

has less value from both multiple linear regression and gradient boosting machine

learning models. The random forest model has 99% smaller value than multiple

linear regression model and 35% smaller value than gradient boosting regression

model. Root mean square error is the standard deviation of the prediction error

from the line of best fit. In case of root mean square error the smaller the value

the lower the error in the model and vice versa. Figure 4.12 shows the comparison

of the values of the RMSE of the machine learning models.

4.7 Work Stealing Scheduler

In this research the concept of work-stealing scheduler is used for scheduling job-

s to processing devices in heterogeneous system. The work-stealing strategy is

briefly described in section 3.1. All the jobs are provided to the model.
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Figure 4.11: Mean Square Error Comparison

Figure 4.12: Root Mean Square Error Comparison

The model have predicted the execution time of each job on CPU device and G-

PU device through machine learning. The predicted execution time of GPU is

subtracted from predicted execution time of CPU. The new values of the jobs are

sorted in ascending order. The jobs having a negative value are CPU suitable

while jobs having positive value are GPU suitable. Table 4.11 shows a sample of

the jobs of the model. Each application is mentioned along with their input data

size, execution time predicted for CPU, execution time predicted for GPU, and
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difference of CPU and GPU. All the jobs are sorted in ascending order on the basis

of the difference column mentioned in table 4.12.

Table 4.11: OpenCL Jobs with Input Size and Predicted Values

App Input Size Pred C time Pred G time Difference

3mm 2800 4.312111 2.4415846 1.8705264

3mm 3000 5.112258 2.9505387 2.1617193

Gemm 1024 0.0926515 0.295397 -0.20275

Gemm 2048 2.6347962 1.7251938 0.909602

Atax 5000 0.0128255 0.0209392 -0.00811

Gesummv 9500 0.0373109 0.1524943 -0.1151834

Gesummv 8000 0.0282827 0.1352338 -0.1069511

Mvt 400 0.0002719 0.0006853 -0.00041

DCT 1024 0.1389051 0.0913682 0.047537

DCT 2048 0.1407294 0.0817043 0.059025

The jobs having negative value are considered as CPU suitable as they have less

execution time on CPU device as compared to GPU device. The jobs having

positive value are considered as GPU suitable as they have less execution time on

GPU device as compared to CPU device. In the table 4.12 the first 5 programs are

CPU suitable as they have negative difference value while the last 5 programs are

GPU suitable as they have positive difference value. The sum of the execution time

of CPU suitable jobs is 0.17134 while sum of the execution time of GPU suitable

jobs is 7.29032. There is a huge difference between the overall execution time of

CPU and GPU. If CPU suitable jobs are assigned to CPU and GPU suitable jobs

are assigned to GPU and no scheduling is performed, the CPU executes their jobs

and will waits for the GPU to execute their programs. It causes an increase in

the overall execution time of jobs and also under-utilization of the CPU. If both

the CPU execution time and GPU execution time is equal then assign the jobs to

their suitable device having less execution time. If overall execution time of CPU

is more than overall execution time of GPU, the work-stealing scheduler move
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Table 4.12: OpenCL jobs with Sorted Difference Time

Application Input Data Size Sorted Difference

Gemm 1024 -0.20275

Gesummv 9500 -0.1151834

Gesummv 8000 -0.1069511

Atax 5000 -0.00811

Mvt 400 -0.00041

DCT 1024 0.047537

DCT 2048 0.059025

Gemm 2048 0.909602

3mm 2800 1.8705264

3mm 3000 2.1617193

one job from the end of CPU queue to GPU as it will have least predicted execution

time. When GPU execute the job with penalty, the scheduler check if there is any

job remaining in CPU queue, if a job is available the scheduler move the last job

from CPU deque to GPU deque. The scheduler repeat the process until all the

jobs of CPU are executed and both the processing devices completes the execution

of jobs at almost on the same time. If the overall execution time of GPU jobs is

more than CPU jobs then the scheduler move the job from GPU deque to CPU

deque having least execution time on GPU device, and repeat the process until

the jobs execution is completed.

The execution time of each job is predicted through machine learning for both CPU

device and GPU device and it is for sure that job having less predicted execution

time on CPU device will have more execution time on GPU and job having less

predicted execution time on GPU device will have more execution time on CPU

device. The job with less predicted execution time for CPU device have more

execution time on GPU device because a penalty is also added in the form of time

as executing a non-suitable job that causes increase in execution time on GPU

device. If the predicted execution time value is smaller, the penalty will also be

smaller and if the predicted execution time value is larger the penalty will also be
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larger. When one job from CPU deque moves to GPU deque it causes decrease

in overall execution time of CPU deque and increase in overall execution time of

GPU deque. Moving a job from GPU deque causes decrease in overall execution

time of GPU device but increase in overall execution time of CPU device. It is

because of executing a program on non-suitable device. If the overall execution

time of device having maximum time, reduces and both CPU and GPU devices

completes their execution almost on same time it indicates that overall execution

time is reduced and resource utilization is achieved with maximum throughput.

The complete scenario of the work stealing scheduler is shown in the following

figure 4.13.

Figure 4.13: Work Stealing Scheduler

4.7.1 Work Stealing Performance and Comparison

In this research, a total 120 programs are selected from two benchmarks suits

polybench and AMD. The job pool contain 35 CPU suitable jobs and 85 GPU

suitable jobs. CPU suitable means the jobs have less predicted execution time on



Results and Discussion 54

CPU while GPU suitable jobs have less predicted execution time on GPU. The

two performance metrics execution time and utilization of devices are elaborated.

The figure 4.14 shows the comparison of all the scheduling heuristics on the basis

of the execution time.

Figure 4.14: Execution Time of Scheduling Heuristics

The figure 4.14 shows that none of the scheduler have less execution time on both

CPU device and GPU device except our proposed model work stealing. The device

suitability have less execution time on CPU but have more on GPU device and

have less utilization of the devices as compared to the proposed scheduler. The

alternate assignment 5 have less execution time on GPU device but have more

execution time on CPU device as compared to work stealing scheduler.

When all the jobs are executed on CPU only, it got 65.63% more execution time

from the proposed scheduler and 0% utilization of devices as GPU was idle on

that time. When all the jobs are executed only on GPU device it takes 35.9%

more execution time from the proposed scheduler and under-utilization of the de-

vices. The first come first serve takes 28.7% more time for the execution of all the

jobs. We performed the experiment of assigning alternate jobs to CPU and GPU

device five times. Each time shuffle all the jobs randomly and assigned each job

alternatively. The alternate assignment 1 have 25.5% more execution time. The
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alternate assignment 2 have 57.7%, alternate assignment 3 have 58.7%, alternate

assignment 4 have 26.9% and alternate assignment 5 have 52.6% more execution

time than the proposed scheduler. The input size have 75.3%, the device suitabil-

ity have 87.1% more execution time than the proposed scheduler.

The figure 4.15 shows the utilization of the devices by the schedulers. The graph

shows that none of the scheduler have more utilization of device except our pro-

posed model work stealing. We executed all the jobs on CPU device only and

got 65% increase in execution time and 0% utilization of devices as GPU was idle

on that time. When all the jobs are executed only on GPU device the overall

execution time got an increase of 56% and under-utilization of the devices.

Figure 4.15: Resource Utilization of Scheduling Heuristics

When the jobs are executed on first come first serve bases 82% utilization of devices

occur which is still less than the proposed scheduler. We performed the experi-

ment of assigning alternate jobs to CPU and GPU device five times. Each time

shuffle all the jobs randomly and assigned each job alternatively. The alternate

assignment 1 utilizes 81% of the processing devices. The alternate assignment 2

only utilizes 56% of the processing devices. The alternate assignment 3 utilizes

only 47% of the processing devices which is the least utilization of the devices.

The alternate assignment 4 also utilizes 81% of the processing devices. The alter-

nate assignment 5 utilizes 50% of the processing devices. The scheduler on input
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base utilizes the devices up to 80%. The device suitability have only utilized 50%

the processing devices. Our proposed scheduler have utilized 93% of the devices

which is the highest of all prescribed schedulers. The figure 4.16 shows the im-

provement of time of each scheduling scheme with respect to the proposed work

stealing scheduler. The figure shows that none of the scheduling schemes have

Figure 4.16: Time Improvement of Scheduling Heuristics w-r-t Proposed
Scheduler

improved the time from the proposed work stealing scheduler. All the schedulers

have a negative value of time improvement with respect to proposed work stealing

scheduler, which indicates that these schedulers have not exceeded from the work

stealing scheduler in time improvement. The CPU Only have the worst improve-

ment of execution time of jobs. The device suitability have more improvement in

the execution time of jobs than other schedulers.

The figure 4.17 shows the throughput of the work stealing scheduler with other

heuristics. Throughput is the ratio between the total number of programs and the

maximum execution time of programs. The graph shows that the work stealing

scheduler have maximum throughput than every other scheduling scheme. The

reason behind the maximum throughput is that the proposed scheduler utilizes

the executing devices. The proposed work-stealing scheduler has 65.5% increase

in throughput from CPU Only, 35.9% from GPU Only, 28.7% from FCFS, 25.5%
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maximum throughput from Alternate Assignment 1, 57.7% from AA2, 58.6% from

AA3, 27% from AA4, 47.4% from AA5, 24.7% improvement from Input Size, and

only 12.9% improvement from Device Suitability.

Figure 4.17: Throughput of Scheduling Heuristics

4.8 Performance Discussion

The experimental results in figure 4.14 and 4.15 shows that the proposed schedul-

ing scheme outperforms all other schemes in the form of overall execution time

of job pool and utilization of processing devices. The performance improvement

of the scheduling scheme is due to the usage of the machine learning for the pre-

diction of execution time. As the execution time of each job in the job pool is

predicted already through machine learning, the jobs are arranged in the job pool

with respect to the execution time. For load balancing the work stealing concept

is used through which the utilization of the processing devices takes place. The

proposed scheduling scheme have less execution time of jobs on CPU except the

device suitability and less execution time of jobs on GPU except alternate assign-

ment number 5. The work stealing scheduler outperforms all scheduling schemes

in utilization of the processing devices.

Furthermore the research questions were following
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1. How to analyze optimization techniques for execution time predictors through

machine learning?

(a) Which set of features play an important role to predict data-parallel

application execution time?

2. How to design and develop a load-balanced scheduler to achieve minimal

execution time, maximal throughput, and improved resource utilization?

The section 4.6 covers the question 1. Three machine learning models multiple

linear regression, gradient boosting regression, and random forest regression mod-

els were implemented for the prediction of the execution time of the jobs on CPU

device and GPU device. Among them the random forest model achieve the maxi-

mum results. The part a) of the question 1 is covered by section 4.4 and section 4.5.

These sections covers the correlation of features with each other and importance

of the features with-respect-to the class label. The table 4.10 shows that using

all the features causes an increase in the evaluation metrics values while using on-

ly important features, improve the results except multiple linear regression. The

section 4.7 covers the answer of question 2. Section 4.7 have briefly described the

work stealing scheduler, their evaluation, and comparison of the execution time,

resource utilization, and throughput with other scheduling heuristics. It shows

that the proposed work-stealing scheduler have 65.6% less execution time, 93.3%

utilization of the resources, and 65.5% increase in throughput.

4.9 Comparison with State-of-the-art Techniques

The section 4.8 briefly discuss the performance of the work stealing scheduler and

provide answers to the research questions stated in chapter 1. The table 4.13

shows the comparison of the work-stealing scheduler result with other state-of-

the-art techniques. The results shows that the proposed model has overcome most

of the heuristics in the execution time and utilization of the devices. The proposed

model has more reduction in the execution time than Khalid et al.[4], Ahmed et

al.[5], and Khalid et al.[13].
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Table 4.13: Comparison of Work Stealing Performance with other Models

Ref App F BM Performance ML

Proposed 120 23
AMD

Polybench

R2:0.99,

65.5% reduction

in exec time, 93%

utilization

MLR,

Random Forest,

Gradient Boost-

ing

[4]

Khalid

et al.

2018

18 -

AMD

parboil

Polybench

Rodinia

8.1% reduction in

exec time. 7.07%

throughput

-

[5]

Ahmed

et al.

2019

930 30

AMD

Polybench

Own

31% reduction

in exec time.

67.8% utilization.

147.35% through-

put

Gradient

Boosting

[13]

Khalid

et al.

2019

199 23

AMD

Parboil

Polybench

Rodinia

38% reduction in

execution time

Random Forest,

Gradient

Boosting

[3]

Ahmed

et al.

2021

930 23
AMD

Polybench

R2:0.76,

F-measure: 0.91

Decision Tree,

Naive Bayes,

Random Forest,

KNN

F = Feature

BM = Benchmark

ML = Machine Learning



Chapter 5

Conclusion and Future Work

The programmer maps jobs to processing devices in a heterogeneous system. They

map suitable job to a suitable device which causes devices idleness and increase

in execution time. The scheduler are used for mapping jobs to executing devices.

The decision of the jobs assignment should be balanced to achieve the maximum

utilization of devices and reduction in execution time of overall jobs. This is a hard

task for programmers to decide about the jobs in heterogeneous environment. In

this research thesis, a novel job scheduling scheme is introduced which is based on

machine learning execution time prediction and uses the concept of work stealing

algorithm. The scheduler uses the predicted execution time of a job on CPU

and GPU device and schedule the jobs to the processing devices considering the

utilization of devices. The main contribution of the research is as follow;

1. Analysis of multiple scheduling heuristics in heterogeneous environment.

2. A machine learning based model development for the prediction of the jobs

execution time on a CPU device and also on GPU device.

3. A scheduling heuristic that consider the execution time of the overall jobs in

the job pool and the utilization of the processing devices.

4. Comparison and analysis of the proposed scheduler with other scheduling

techniques in the form of execution time and utilization of resources.

60
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5.1 Future Work

In this research thesis, a Load-Balanced Task Scheduler for Heterogeneous Systems

based on Machine Learning is proposed that distributes the OpenCL applications

among the processing devices, considering the reduction of the overall execution

time of jobs in the job pool and the utilization of the processing devices. The

proposed scheduler maps only static jobs to the processing devices and considers

only the integrated Graphics processing units. In future, this framework can be

extended to dynamic allocation of jobs to processing devices and usage of the

discrete graphic processing units.
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